

Sixth Semester B.E. Degree Examination, June/July 2017 Compiler Design

Time: 3 hrs. Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- 1 a. Explain the differential phases of a compiler by considering the following statement as input a = b + c * 60 (10 Marks)
 - b. Explain the concept of input buffering in the lexical analysis phase of a compiler. (06 Marks)
 - c. Construct transition diagram to recognize the tokens given below:
 - (i) identifiers
- (ii) Relational operators.

(04 Marks)

- 2 a. Briefly explain the problems associated with top-down parser.
- (12 Marks)

b. Explain the role of the parser in compiler model.

(04 Marks)

c. Explain error recovery strategies in parser.

(04 Marks)

- **3** a. Given the grammar
 - $E \rightarrow E + T/T$
 - $T \rightarrow T * F / F$
 - $F \rightarrow (E)/id$
 - (i) Make the necessary changes to make it suitable for LL(1) parsing.
 - (ii) Construct FIRST and FOLLOW sets.
 - (iii) Construct the predictive parsing table.
 - (iv) Show the moves made by the predictive parser on the input.
- (12 Marks) (08 Marks)

- b. What is Handle Pruning? Explain with an example.
- 4 a. Construct SLR Parsing table for the following grammar:
 - $X \rightarrow Xb$
 - $X \rightarrow a$

and show the moves made by the parser on the input string abb.

(12 Marks)

b. Construct LALR parsing table for the grammar,

 $S \rightarrow CC$

$$C \rightarrow aC/d$$

(08 Marks)

PART - B

- 5 a. Briefly explain the concept of syntax directed definition with example.
- (08 Marks)

b. Define inherited and synthesized attributes.

- (04 Marks)
- c. Give the syntax directed definition to process a variable declaration in C and construct dependency graph for input float x, y, z; (08 Marks)
- 6 a. Construct DAG for the expression,

$$((x + y) - ((x + y)*(x - y))) + ((x + y)*(x - y))$$

Give the sequence of steps for the same.

(08 Marks)

b. Explain with examples quadruples, triples and indirect triples.

- (12 Marks)
- 7 a. What is an activation record? Explain all the fields in an activation record.
- (08 Marks)

- b. Explain the following storage allocation strategies:
 - (i) Static allocation
- (ii) Heap allocation.

(12 Marks)

- **8** a. Discuss the following terms:
 - (i) Basic blocks.
- (ii) Next-use information.
- (iii) Flow graph.
- (10 Marks)

- b. Explain the following code optimization with example:
 - (i) Finding local common sub expression.
 - (ii) Dead code elimination.

(10 Marks)

* * * * *